The Rise and Fall of the American Chip Industry

The Rise and Fall of the American Chip Industry

The semiconductor chip is at the chief of what we think us as technology. Computers, cell phones, iPods, medical equipment, avionics, etc. have only been possible because of the chip. The American chip industry has been damaged by the recent economic slowdown like most industries, but more importantly, the chip business in the United States has been in a slow fall for 30 years.

In January global chip sales dropped by almost a third from the past year, to $15.3 billion (Semiconductor Industry Association). Overinvestment in chip factories has resulted in steep losses of over the last 2 years. The chip business has been compared to farming. If too many farmers plant cotton, then the price of cotton will drop (supply and need).

The American chip industry, outside of Intel, is an abundant species. AT&T, Hewlett-Packard, and others are already gone from the field. Others, like Texas Instruments, have set a path for the eventual elimination of manufacturing. These companies have gone fabless, meaning they will continue designing applications, but leave the time of action technology and manufacturing to someone else (most often to companies in Asia).

The microprocessor market has been the exception, especially Intel. The microprocessor market has been controlled by Intel. It has been a kind of monopoly. But Intel, when operating outside the microprocessor arena (i.e. DRAM or Flash memory), has followed the general form.

Intel has recently closed 3 factories (the industry calls them Fabs, short for fabrication): one in Colorado, one in Oregon, and one in California. But Intel is building microprocessor fabs at the same time, currently building a factory in Phoenix and one in Israel. Intel is doing OK. Intel had over $12 billion of cash on hand at the end of 2008.

In 1980, one of the pivotal events in the history of the chip industry, was IBMs selection of Intel to build the microprocessors for the IBM personal computers. IBM chose Intel over Motorola and Zilog (Zilog was established by ex-Intel engineer Frederico Faggin, who invented the MOS course of action while at Fairchild).

IBM insisted that Intel ease second supplies for the microprocessors by allowing companies like AMD to alternatively manufacture the chips. Intels wealth has been almost fully acquired because of their control of the personal computer. IBM ceded control of the personal computer away with this agreement, or more precisely, their failure to execute this agreement.

The Rise of the American Chip Industry

The Chip Industry has its roots firmly in the United States. Scientists at AT&T Bell Labs invented the transistor in 1947. The chip, or integrated circuit, was invented by Jack Kilby of Texas Instruments and Robert Noyce of Fairchild (later Intel) in 1958. There were many interim steps between these two seminal events, most achieved by the teams from Fairchild and RCA.

In 1975, the U.S. had more than 70% of the worlds market proportion for chips. The chip industry titans during the development years were IBM, AT&T, Texas Instruments, Motorola, and Hewlett-Packard. These were established technology companies that had success in the emerging field.

Silicon Valley, in California, was largely the consequence of startup companies with ties to Fairchild, who was located in the area. Fairchild was a technology pioneer, but most of the success came from Fairchild alumni, what became known as the Fairchildren. Alumni from Fairchild established Intel, AMD, National Semiconductor, LSI Logic, Altera, Xilinx and many others. One notable Fairchild alumni was Eugene Kleiner, who would later found Kleiner Perkins, a venture capital firm that would help Amazon, Google and Sun Microsystems become billion-dollar companies.

The Fall of the American Chip Industry

Since the U.S. had such a commanding market proportion in the 1970s, it was natural that this position would be difficult to continue. The first challenger was Japan, who was very successful at capturing the DRAM market, at the time the most important chip market. By the mid 1980s, 80 percent of the DRAM market belonged to Japan.

Many outside of Asia fail to give proper credit to the emergence of Japan in the chip industry. The shared perception is that the only reason for Japans success was low labor costs. In fact, the dominant reason for Japans ability to manufacture at lower cost was a superior technical strategy. American DRAM manufacturers switched to a lithography technology called steppers a generation before the Japanese. The Japanese continued to utilize the past generation lithography technology called scanners. The American companies falsely believed that scanner technology would be inadequate for the newest memory devices. Scanners are considerably faster and less expensive to function than steppers. Because the lithography step is so important to the overall course of action, the Japanese had a meaningful advantage, and used that advantage to capture the DRAM market.

In 1987 the United States started a research consortium called Sematech to combat the loss of market proportion. The plan called for the chip companies to proportion research costs, with a government subsidy. Member companies contributed $124 million to Sematechs 1990 budget and $100 million was contributed by the government by the Defense progressive Research Projects Agency (DARPA).

Japans market proportion did drop in the early 1990s, but this was probably more as a consequence of problems in the Japanese economy than with developments in the U.S. chip industry. The Japanese stock market bubble burst, much like the dot-com market burst in the United States. Japans market proportion of total chip sales peaked in 1988 at about 49%. Today, Japans world market proportion of the chip business is about 25%.

Sematech had a positive impact on the U.S. chip companies circuit reliability. Statistical course of action control (SPC) techniques were led by Sematech and resulted in emotional improvements. Motorola, a Sematech member, was the first winner of the Malcolm Baldrige Quality Award. The progress in reliability enabled chip customers to forego incoming inspection of chips, a huge cost savings.

Sematech was very active helping an immature U.S. equipment industry enhance their tools. Sematech effectively moved the technology center of semiconductor industry from chip manufacturers to the chip equipment companies like Applied Materials and KLA. Before Sematech, the customers were the time of action experts, but now the time of action tool companies included course of action skill with the equipment. This was very good for the lucky equipment companies, but Sematech was very selective. Many tool vendors were shut out by Sematech.

Those outside the chip community sometimes fail to understand the degree to which the chip equipment industry is internationalized. A fab requires hundreds of different course of action tools for the many different course of action steps (some chips require more than 500 course of action steps). Many of the tools cost more $1 million. Most fabs will attempt to standardize on a tool supplier for a particular course of action step, but all fabs have equipment from many different companies.

A few years ago, a major Wall Street Analyst cut his forecast of Applied Materials business prospects based on the growth of the Taiwan semiconductor industry. The flaw in this logic is that a Taiwanese factory uses U.S. equipment at about the same rate as a United States based company. U.S. companies also commonly use equipment manufactured from outside the U.S, especially from Japan.

Since the chip equipment industry is so globalized, if Sematech makes an improvement, U.S. companies gain little, if any, advantage. Chip manufacturing has become highly homogeneous, from company to company, and from country to country. Because the equipment companies now controlled the time of action technology, it became much easier for countries like South Korea, Taiwan, and China to go into the market. If a company had the money, the technology was for sale.

The consequence of the work done by the industry, especially by Sematech and its Japanese style, Tohoku University, was that the time of action of manufacturing chips became less of an art, and more of a science. Chip manufacturing became paint by the numbers. Once the industry reached this level of maturity, the price of capital, and the price of labor, became the principal factors in the choice of manufacturing location.

A state of the art fab requires an investment of $3-4 billion. Chip manufacture is now a commodity business involving huge production volumes and low profit margins. A recent count of the last 40 chip factories built showed that 35 were in Asia, 3 were in the United States, and 2 were in Europe.

The memory market, including the products DRAM and Flash Memory, is the most competitive chip arena. South Korean companies currently rule the memory market. Samsung is the leader, with more than 30 per cent market proportion, and Hynix is second, with more than 18 per cent market proportion. Elpida (Taiwan) with 15 percent, Micron (U.S.) with 11 percent, and Qimonda (formerly Siemens/Infineon, Germany, currently in bankruptcy) with 8 percent, are the other meaningful market proportion holders.

The Emergence of the Chip Foundry

Chip manufacturing technology continues to become more of a commodity. Companies that once designed, manufactured, and marketed chips, now hire a third party for the manufacture step. This is what is meant by a fabless company. The company that performs the manufacturing step is the foundry. The design is achieved via collaboration between the foundry and the fabless company.
A modern foundry provides software tools so that the fabless company can accomplish their objective using standard course of action cells, technology that is owned by the foundry. One of the worlds first chip foundries was produced in Taiwan by Texas Instruments in 1989 to manufacture DRAM. The company was called TI-Acer.

Taiwan Semiconductor (TSMC), with $30 billion market capitalization, is the current leader in the foundry chip industry, and currently boasts more than 44 per cent of the world market proportion of chip foundry business. TSMC was established in 1987 as a joint venture of Philips (Netherlands), the government of Taiwan, and private investors. Morris Chang is the founder of TSMC, and continues to serve as the Chairman. Mr. Changs begin again includes 25 years at Texas Instruments, leaving as a group vice president responsible for the companys worldwide semiconductor business. TI-Acer merged with TSMC in 1999.

The worlds second largest foundry is also in Taiwan. UMC claims more than 14% of the foundry business worldwide. Taiwan, a country about the size of Vancouver, Canada, has the highest concentration of semiconductor manufacturing in the world.

It is interesting to observe that two of the executives instrumental in recent events in the semiconductor industry are on the TSMC board of directors: Carly Fiorina and Thomas Engibous.

Carly Fiorina is now best known as John McCains Economic Advisor during the last election. She is the former CEO of Hewlett Packard where she oversaw HPs exit from the chip manufacturing business. In addition, Ms. Fiorina spent nearly 20 years at AT&T and Lucent Technologies Inc. where she served as Executive Vice President, Computer Operations for Lucent and oversaw the exit of AT&T from chip manufacturing.

Thomas J. Engibous (former Texas Instruments Chairman, former president and CEO 1996 -2004), was the department manager of TIs semiconductor group when TI established TI-Acer. Texas Instruments has deleted their R&D operation, and plans to be fabless for most of their production. TI was one of TSMCs first customers. Much of the foundry form has roots from within Texas Instruments.

The Future of the American Chip Industry

Intel will continue to rule the Personal Computer microprocessor business for the foreseeable future. There are threats. AMD does everything well except make money. A Taiwan company called Via may be the more meaningful long-term threat. Via designs the chips and manufactures them at the local foundries. Vias chief designs originated with Cyrix Semiconductor, a company started by ex-Texas Instrument engineers. Cyrix was sold to Via in 1999. Vias processors are competing well against the Intel Atom microprocessor, in less expensive laptop computers.

AMD recently completed an agreement with a company from ATIC (progressive Technology Investment Company) funded by the Government of Dubai, that should permit them to continue to compete with Intel. AMD plans to build (with their partner), a chip manufacturing facility in Saratoga County, New York. AMD currently manufactures all of its microprocessors in Dresden, Germany.

AMD has a technology exchange agreement with IBM. IBM continues to do well. IBMs strategy is to participate in higher margin products and avoid commodity markets like DRAM. IBM remains a world leader of chip technology.

Foreign companies continue to invest in U.S. fabs, but at a reduced rate. Samsung is doing well with its DRAM factories in Round Rock, Texas, a few miles north of Austin. Samsung operates two fabs; the newest fab opened in 2007 and is considered state-of-the-art.

There are also success stories at the lower end of the technology extent. X-Fab, a German company, operates a fab in Lubbock that is a bright star on a bleak scenery. X-Fab excels by thinking out-of-the-box, something extremely scarce in the chip industry today, ironic considering its history. It would be impossible for X-Fab to compete in a high quantity, low margin business like DRAM, but they do very well with custom analog chip production. The facility was originally built by Texas Instruments.

More than half of the chip fabs in the United States in in operation at the beginning of the decade are now closed. Outside of Intel, there has been little to cheer about. There is little mystery about what the future holds. Our actions today determine our consequences tomorrow.

leave your comment

Featured Posts

Recent Posts

  • 350 T15 An Phú Đông Q.12 TP.HCM
2,750.00$ (Fixed)
  • 350 T15 An Phú Đông Q.12 TP.HCM
9.98$ (Fixed)
  • Tĩnh lộ 8, CỦ CHI
5,400,000.00$ (Negotiable)
  • Thạnh Xuân 38, Phường Thạnh Xu...
108,000.00$ (Negotiable)

Recent comments